,

Negative opinion for EXONDYS® in Europe

 

Here’s the latest news from Sarepta Therapeutics press release about EXONDYS® (eteplirsen). EXONDYS® (eteplirsen) is designed to treat patients with Duchenne muscular dystrophy (DMD) amenable to skipping exon 51 of the dystrophin gene. Enjoy reading and thank you for sharing these articles within the DMD community.

 

Sarepta receives negative CHMP opinion for EXONDYS® (eteplirsen) in Europe

Sarepta Therapeutics, Inc., announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) had adopted a negative opinion for EXONDYS® (eteplirsen).

 

Request for re-examination

Sarepta will request a re-examination of the opinion, which will result in the assignment of a new rapporteur and co-rapporteur. The company will also request a Scientific Advisory Group (SAG) on DMD to be called so that neuromuscular specialists experienced with working on treatments for these patients can provide expert guidance and insight into, among other things, the validity of the external controls used and the importance of certain functional endpoints, including, for instance, the relevance of meaningful slowing pulmonary decline in patients with this difficult to treat disease. The re-examination process is expected to be completed by year-end 2018.

 

EXONDYS® a treatment using the exon-skipping technique

This treatment uses a specific exon-skipping technique to jump over a portion of genetic machinery that produces a non-working, mutated form of dystrophin in children with DMD. It aims to restore the machinery’s ability to read genetic code, so it can produce a less mutated form of dystrophin that works in children with DMD.

The production of partly functional dystrophin may delay muscle destruction and extend mobility in children with this devastating, rare disease. More specifically, Exondys 51 (eteplirsen) triggers the skipping of exon 51, which occurs in 13% of children with DMD.

 

About DMD

Duchenne muscular dystrophy (DMD) is a disease that almost exclusively affects boys and whose incidence is 1 in 3,500. It is extremely rare that Duchenne muscular dystrophy (DMD) will affect girls. Those affected are usually diagnosed around the age of five, but symptoms may be visible from early childhood. It is a degenerative disease of the muscles caused by a genetic mutation. The Duchenne muscular dystrophy (DMD) – for which no treatment is currently available – directly affects skeletal muscles. Without treatment, the consequences of the disease are dire for those afflicted and their families.

 

More interesting link:

Please visit: www.sarepta.com

Video Professor Georges Dickson

Press Release

,

Solid Biosciences announces new preclinical data about gene transfer

 

One of the objectives of our team is to inform you about new treatments. Here’s the latest news from a recent Solid Bioscience press release about SGT-001, the Company’s lead microdystrophin gene transfer candidate. Enjoy reading and thank you for sharing these articles within the DMD community.

 

Solid Biosciences announces new preclinical data at the American Society of Gene and Cell Therapy Annual Meeting

Solid Biosciences Inc. announced new preclinical data from its gene therapy development programs for Duchenne muscular dystrophy (DMD). New data for SGT-001 further demonstrate its potential to produce long-term and body-wide microdystrophin expression that correlates with significant improvements in muscle function.

 

“Solid remains steadfast in our mission to bring important therapies to patients with DMD, where a significant unmet need exists. These data further support the investigation of SGT-001 as a potential new treatment option for those living with this devastating disease, as well as reinforce our commitment to advancing cutting-edge innovations through our next generation gene therapy pipeline,” said Carl Morris, Ph.D., Chief Scientific Officer of Solid Biosciences.

 

 

About SGT-001

SGT-001 is a novel adeno-associated virus* (AAV) vector-mediated gene transfer under investigation for its ability to address the underlying genetic cause of DMD. SGT-001 is a systemically administered* candidate that delivers a synthetic dystrophin gene, called microdystrophin, to the body. This microdystrophin encodes for a functional protein surrogate that is expressed in muscles and stabilizes essential associated proteins.

  • Adeno-associated virus > is a small virus which infects humans and some other primate species. Link
  • Systemically administered > Systemic forms of administration affect the whole body (in general).

Data from Solid’s preclinical program suggests that SGT-001 has the potential to slow or stop the progression of DMD, regardless of genetic mutation or disease stage. SGT-001 is based on pioneering research in dystrophin biology by Dr. Jeffrey Chamberlain of the University of Washington and Dr. Dongsheng Duan of the University of Missouri.

 

Status

SGT-001 has been granted Rare Pediatric Disease Designation or RPDD in the United States and Orphan Drug Designation in both the United States and European Union. The Phase I/II clinical trial for SGT-001, IGNITE DMD, is currently on clinical hold. Microdystrophin gene transfer trial on hold

 

About Solid Biosciences

Solid Biosciences is a life science company focused solely on finding meaningful therapies for Duchenne muscular dystrophy (DMD). Founded by people touched by the disease, Solid Biosciences is a center of excellence for DMD, bringing together experts in science, technology and care to drive forward a portfolio of candidates that have life-changing potential. Currently, Solid Biosciences is progressing from programs across four scientific platforms: corrective therapies, disease-modifying therapies, disease understanding and assistive devices. For more information, please visit this website: www.solidbio.com.

 

About DMD

Duchenne muscular dystrophy (DMD) is a disease that almost exclusively affects boys and whose incidence is 1 in 3,500. It is extremely rare that Duchenne muscular dystrophy (DMD) will affect girls. Those affected are usually diagnosed around the age of five, but symptoms may be visible from early childhood. It is a degenerative disease of the muscles caused by a genetic mutation. The Duchenne muscular dystrophy (DMD) – for which no treatment is currently available – directly affects skeletal muscles. Without treatment, the consequences of the disease are dire for those afflicted and their families.

 

To know more

SOLID BIOSCIENCES INITIATES CLINICAL TRIAL FOR GENE TRANSFER

GLOBE NEWSWIRE: Solid-Biosciences-Announces-New-Preclinical-Data-at-the-American-Society-of-Gene-and-Cell-Therapy-Annual-Meeting

,

Positive news for Translarna™ (ataluren)

 

One of the objectives of our team is to inform you about new treatments. Here’s the latest news from PTC Therapeutics press release about Translarna ™ (ataluren). Enjoy reading and thank you for sharing these articles within the DMD community.

 

CHMP Adopts Positive Opinion for the Expansion of the Translarna ™ (ataluren) Label to Include Patients as Young as 2 Years of Age

PTC Therapeutics, Inc. announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) had recommended approval of expanding the indication of Translarna ™ (ataluren) to include ambulatory children aged two to five years with nonsense mutation Duchenne muscular dystrophy (nmDMD). This broadens the use beyond the current indication which is for ambulatory patients who are over five years of age. In addition to the label expansion, the CHMP has also recommended the renewal of the current marketing authorization of Translarna.

“Early diagnosis and treatment has been a paramount part of our strategy and this recommendation perfectly aligns with our vision of giving best-in-class treatment to patients,” said Marcio Souza, the chief operating officer of PTC Therapeutics.

PTC’s focus on early patient identification and market readiness have been intensified in anticipation of the CHMP recommendation and the launch of Translarna for patients as young as two years of age, and it is planned to start immediately at the time of EC ratification.

 

About  Translarna ™ (ataluren)

Discovered and developed by PTC Therapeutics, Inc., Translarna ™ (ataluren) is a protein restoration therapy designed to enable the formation of a functioning protein in patients with genetic disorders caused by a nonsense mutation. A nonsense mutation is an alteration in the genetic code that prematurely halts the synthesis of an essential protein. The resulting disorder is determined by which protein cannot be expressed in its entirety and is no longer functional, such as dystrophin in Duchenne muscular dystrophy.

read more: https://laforcedmd.com/ataluren-promising-treatment-for-dmd/

 

About DMD

Duchenne muscular dystrophy (DMD) is a disease that almost exclusively affects boys and whose incidence is 1 in 3,500. It is extremely rare that Duchenne muscular dystrophy (DMD) will affect girls. Those affected are usually diagnosed around the age of five, but symptoms may be visible from early childhood. It is a degenerative disease of the muscles caused by a genetic mutation. The Duchenne muscular dystrophy (DMD) – for which no treatment is currently available – directly affects skeletal muscles. Without treatment, the consequences of the disease are dire for those afflicted and their families.

 

Press release:  http://ir.ptcbio.com/news-releases/news-release-details/chmp-adopts-positive-opinion-expansion-translarnatm-ataluren

,

Recruiting participants here in Canada

 

Sarepta Therapeutics is recruiting DMD patients that have out-of-frame deletion mutations in dystrophin that may be treated by skipping exon 45 or exon 53 for its ESSENCE study.

 

Purpose of the ESSENCE Study

Sarepta is recruiting for Duchenne muscular dystrophy (DMD) patients with deletion mutations amenable to exon 45 or exon 53 skipping.

The purpose of this Phase III research study is to evaluate the safety and effectiveness of SRP-4045 and SRP-4053 in boys with DMD, who have a deletion that is potentially responsive or amenable to exon 45 or exon 53 skipping.

ESSENCE is a randomized, placebo-controlled study. Each study participant will be randomly assigned to receive either active study drug (SRP-4045 or SRP-4053, depending on his deletion type) or placebo. Placebo is made to look just like the active study drug, but it will not contain any active substance. Researchers use a placebo to see if the active study drug works and to see how safe and effective it is compared to not taking anything. This trial design is the best way to get a clear answer about the safety and effectiveness of a new drug and is usually required by regulatory authorities in the approval process for a drug.

 

Who may be able to participate in the ESSENCE study?

  • Boys with DMD, 7 to 13 years old who can walk
  • Boys having a genetic test that shows they have a deletion that may be treated by skipping exon 45 or 53*
  • Boys that have been on a stable dose of corticosteroids (e.g. prednisone or deflazacort) for at least six months
  • Stable lung (breathing) and heart function

 

Why should I consider participating in this study?

  • Access to an investigational therapy
  • Access to highly experienced clinicians with strong expertise in treating DMD
  • Opportunity to become more familiar with what participation in a clinical study entails
  • Opportunity to help others by contributing to medical research that may accelerate

 

Two hospitals are participating in this trial in Canada:

Alberta > Alberta Children’s Hospital

Principal Investigator: Jean Mah, MD

Contact: tiffany.haig@albertahealthservices.ca

  

Ontario > London Health Sciences Centre

Principal Investigator: Craig Campbell, MD

Contact: gina.bhullar@lhsc.on.ca

More trial sites: clinicaltrials.gov

 

What is Exon Skipping

Mutations in the dystrophin gene are one cause of DMD. Most commonly, one or more exons (a portion of a gene) are missing, and the remaining exons don’t fit together correctly. (Think of a zipper that doesn’t work properly, because teeth are missing.)

Because of this error, cells cannot make the dystrophin protein that muscles need to work properly. Without it, muscle cells become damaged and, over time, are replaced with scar tissue and fat.

To fix the broken genetic machinery, scientists are developing drugs that skip over parts that contain missing or defective exons. In this way, the machinery can produce a less imperfect dystrophin protein, which may improve muscle function in children with exon mutations.

Sarepta investigational therapies in the ESSENCE study use a technique referred to as exon skipping. Skipping a specific exon next to the mutation is intended to allow the body to make a shortened form of the dystrophin protein.

 

About DMD

Duchenne muscular dystrophy (DMD) is a disease that almost exclusively affects boys and whose incidence is 1 in 3,500. It is extremely rare that Duchenne muscular dystrophy (DMD) will affect girls. Those affected are usually diagnosed around the age of five, but symptoms may be visible from early childhood. It is a degenerative disease of the muscles caused by a genetic mutation. The Duchenne muscular dystrophy (DMD) – for which no treatment is currently available – directly affects skeletal muscles. Without treatment, the consequences of the disease are dire for those afflicted and their families.

Disclaimer: Choosing to participate in a study is an important personal decision. Before you participate in a study, discuss all options with your health care provider and other trusted advisors.

 

More about ESSENCE

Brochure: sarepta.com/Brochure.pdf

For more information, contact: trialinfo@sarepta.com Visit www.sarepta.com for updates on Sarepta’s clinical studies

ESSENCE: essencetrial.com

ESSENCE clinical trial information: clinicaltrials.gov  #NCT02500381